
ComGenius for SoftPLC® Runtime
Version 1.0

Table of Contents
1. Overview . 1

1.1. Introduction . 1

1.2. Definitions . 1

1.3. TLI Summary . 2

1.4. Requirements. 3

1.5. Changes in 4.x . 3

2. Warranty . 4

3. Configuration. 5

3.1. Module Editor . 5

3.2. Configuration File . 6

3.2.1. [DRIVER] . 6

3.2.2. [PORTS] . 6

3.2.3. [STRINGS] . 6

Escape Sequences . 7

4. Usage . 9

4.1. Installation . 9

4.2. Editor Usage . 9

4.3. Ladder Instructions . 10

4.3.1. COMRCVCLEAR . 10

4.3.2. COMXMITCLEAR . 11

4.3.3. COMRCVSTS . 11

4.3.4. COMPRINT . 12

STATUS BITS/TROUBLESHOOTING COMPRINT . 23

4.3.5. COMSCAN . 24

4.3.6. STRPRINT . 35

4.3.7. STRSCAN . 36

5. Debugging Tips . 38

5.1. Enabling Debug Prints. 38

6. Examples . 39

6.1. Example 1. COMPRINT of Text with Integers. 39

6.1.1. Example 1. COMPRINT of Text with Integers . 39

6.2. Example 2. COMPRINT of Modbus RTU Query . 39

6.3. Example 3. COMSCAN of Text with Integers . 40

6.4. Example 4. COMSCAN of Modbus RTU Response . 41

6.5. Example 5. Simple Modbus RTU Master . 42

Chapter 1. Overview

1.1. Introduction
This document describes the installation, usage, and functionality of a TLM (TOPDOC Loadable
Module) for SoftPLC version 4.x and later. The TLM implements several TLIs (TOPDOC Loadable
Instructions) for use with serial ports. COMGENIUS can be used to perform bi-directional serial
communications to devices via RS-232, RS-422, or RS-485 links. COMGENIUS supports up to 36 serial
ports in a SoftPLC system.

SoftPLC Corporation’s SoftPLC control software product employs a unique technology which lets
C/C++ or Java language programmers add new ladder logic instructions to the instruction set. A
loadable instruction of this type is called a TLI. TOPDOC, the ladder logic programming package
which supports SoftPLC, automatically learns about new TLIs as it logs into a SoftPLC.

TLIs may be developed by any competent C/C/Java programmer who has access to the SoftPLC
C/C/Java Programmer’s Toolkit, a product readily available from SoftPLC Corporation. There are a
number of Systems Integrators who are SoftPLC Partners who possess the requisite expertise. End
users may also have this capability.

This document describes a number of TLIs, all which reside in a TLM (TOPDOC Loadable Module)
that is provided at no charge with all SoftPLC licenses. The TLM described by this document is
called COMGENIUS. COMGENIUS can be used to perform bi-directional serial communications to
devices via RS-232, RS-422, or RS-485 links. COMGENIUS supports up to 36 serial ports in a SoftPLC
system.

1.2. Definitions
TLM is a TOPDOC Loadable Module that you write in C or C++. It can implement

a driver and/or one or more ladder instructions. It is executable within
SoftPLC only, so it must be downloaded.

TLI A custom written ladder instruction, meaning TOPDOC Loadable
Instruction. A TLI can be written in C/C++ and reside in a TLM, or it can be
written in Java and reside in a Modlet or Driverlet.

port is a serial port. The SoftPLC runtime and COMGENIUS both support up to
36 serial ports.

byte is an 8 bit value.

character is a 16 bit value that can reside in a STRING element and holds an
international UCS-2 (UNICODE) symbol. ASCII is a subset of UCS-2.

1

http://softplc.com/splcdata.php

STRING element is an array of 16 bit (international) characters up to 82 character in length.
The SoftPLC runtime supports arrays of STRING elements called STRING
files, where there may be up to 10,000 STRING elements in each file. Up to
10,000 files are supported in a SoftPLC runtime. This is a maximum total
of about 100,000,000 STRING elements comprised of 8,200,000,000 UCS-2
characters.

format string is used by the COMPRINT and STRPRINT TLIs and describes how to how to
convert the TLI’s input arguments to a sequence of characters for output
to a serial port or to a STRING element.

whitespace a whitespace character is any character that is one of: ' ' (blank), \t (tab), \n
(line feed), \r (carriage return), \v (vertical tab), and \f (formfeed).

1.3. TLI Summary
The TLIs whose names begin with "COM" take a parameter called port. The port number specifies
which logical serial COM channel a TLI is to work on. Since COMGENIUS supports 36 ports, legal
values for port are 0 through 35. The port number may be provided either as a constant or as a PLC
datatable word containing the value. All supported ports may be concurrently active.

The TLIs included in COMGENIUS TLM are:

TLI Name Description

COMPRINT Outputs a packet of characters which is
dynamically assembled using powerful string
formatting.

COMSCAN Receives a packet of bytes and automatically
decomposes it into useful data fields located in
INTEGER, FLOAT and/or STRING elements.

COMRCVCLEAR Clears the input buffer for a port.

COMRCVSTS Tells how many characters are in the input
buffer for a port.

COMXMITCLEAR Clears the output buffer for a port.

STRPRINT Works like COMPRINT, but uses a datatable
resident destination STRING element instead of
using a port. Outputs a string of characters using
powerful string formatting.

STRSCAN Works like COMSCAN, but uses a datatable
resident STRING element instead of characters
in a port buffer. Automatically decomposes a
STRING into useful data fields located in
INTEGER, FLOAT and/or STRING elements.

2

1.4. Requirements
• TOPDOC NexGen version 1.3.06xxxx or later, since there were some mandatory ehancements

made in early 2006 which dealt with STRING parameters during instruction entry.

• Version 4.x SoftPLC or later.

• Serial Ports. CPU offerings from SoftPLC Corp. come standard with COM1 and sometimes COM2
depending on the platform. COM3-COM36 can only be used if you have one or more supported
serial port expansion cards installed in the system. Check with tech support at SoftPLC Corp. for
a list of supported serial port expansion cards available from SoftPLC for your platform.

1.5. Changes in 4.x
This TLM was substantially re-written since version 3.x SoftPLC, where it was known as
COMGENIE. Below are the major changes from the 3.x version:

• All configuration information is now given in a single text file called COMGENIUS.LST.
Information that was in the STRINGS.TXT file must be moved into COMGENIUS.LST. (This can be
done with a simple cut and paste operation.)

• Internally, format strings are comprized of 16 bit characters. So although COMGENIUS.LST is an
8 bit ASCII file, any arbitrary UCS-2 character may be put into a format string by using the
unicode escape sequence, which is like \uHHHH where the Hs are hex characters 0-9 and A-F
or a-f. For example, the sequence \u000a is an ASCII line feed. Unicode escapes are an extension
of the single byte hex escape, which have always been supported and still are, \xHH.

• The special format string escape \n is now interpreted as a line feed character, and not a
carriage return linefeed combination as before. If you are converting from 3.x, you may have to
do a search and replace on your format strings, changing \n with \r\n.

• The port configuration information is now also in the COMGENIUS.LST file and not onthe
module command line as before.

• STRING datatable elements are now required for COMPRINT or COMSCAN instructions where
the corresponding format string is using %s. This is easier to work with, but might require some
logic changes since you may no longer print a string contained in an integer file.

• The MEMCOMPARE TLI has been dropped. For comparing integers and floats, EQU or CMP may
be used. For comparing STRINGS, use the ASR instruction instead.

• Since characters in a SoftPLC STRING element are 2 bytes wide and serial communications often
requires 8 bit characters, now an encoding parameter is used to specify how to convert from
the 16 bit STRING characters to the serialized data stream. This is specifiable per port and the
chosen encoding methodology applies to both sending and receiving characters, but receiving
bytes is the reverse of sending bytes as far as the encoding methodology is concerned.

3

http://gedcom-parse.sourceforge.net/doc/encoding.html

Chapter 2. Warranty
Because of the variety of uses of the information described in this manual, the users of, and those
responsible for applying this information must satisfy themselves as to the acceptability of each
application and use of the information. In no event will SoftPLC Corporation be responsible or
liable for its use, nor for any infringements of patents or other rights of third parties which may
result from its use.

SOFTPLC CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

SoftPLC Corporation reserves the right to change product specifications at any time without notice.
No part of this document may be reproduced by any means, nor translated, nor transmitted to any
magnetic medium without the written consent of SoftPLC Corporation.

SoftPLC, and TOPDOC are registered trademarks of SoftPLC Corporation.

© Copyright 2006 SoftPLC Corporation ALL RIGHTS RESERVED

First Printing November, 1994

Last Printing January, 2006

SoftPLC Corporation 25603 Red Brangus Drive
Spicewood, Texas 78669
USA Telephone: 1-800-SoftPLC
Fax: 512/264-8399
URL: http://softplc.com
Email: support@softplc.com

4

http://softplc.com
mailto:support@softplc.com

Chapter 3. Configuration

3.1. Module Editor
Use TOPDOC NexGen’s PLC » Module Editor to load and configure the COMGENIUS.TLM for use
with SoftPLC, as shown in the figure below. Clicking Configure opens the configuration text
editor. Then press Fetch if remote editing, or Load if local editing to call up the respective copy of
COMGENIUS.LST for editing.

Sample COMGENIUS.LST file

; The SoftPLC COMGENIUS.LST configuration file consist of 3 sections:
; [DRIVER], [PORTS], and [STRINGS]. Lines beginning with a semi-colon
; are considered comments and are ignored. Anything after a semi-colon
; is a comment, unless it occurs in the [STRINGS] section.
; Each line in the [STRINGS] section is a format string, and must be
; bracketed in double quotes. The first format string is considered index 1,
; the second format string is considered index 2, etc.

[DRIVER]
; Global, driver-wide settings

DEBUG=0

[PORTS]
; [PORTS] should include one line for each serial port you want active.
; The LOGICAL PORT value is what you give to the COMPRINT
; instruction's "Port" parameter.

; LOGICAL PORT
; | PHYSICAL SERIAL PORT 0-31
; | | Encoding, usually "ISO-8859-1"
; | | | Baudrate: 9600 or 19200 or 38400
; | | | | Databits: 8
; | | | | | Parity: N or E or O
; | | | | | | Stopbits: 1 or 2
; | | | | | | | Timeout milliseconds
; | | | | | | | |
; | | | | | | | |
 0, 0, ISO-8859-1, 38400, 8, N, 1, 500

[STRINGS]
1 "Rack no: %3o has %2d modules.\r\n" example 1
2 "\x02\x03%.2C%.2C%#R" example 2 & 5, Modbus slave 2, function 3
3 "AK HM %.14s %.3d" example 3
4 "\x02\x03\xfa%.250C%#R" example 4 & 5
5 "\x02\x83%c%#R" example 5, Modbus exception response
6 "A STRPRINT test: number:%2d float:%g ST:%s"

5

7 "A_STRing -3.14 -4555"
8 "%s %f %d"

3.2. Configuration File
The following subsections describe the format of the configuration file COMGENIUS.LST

3.2.1. [DRIVER]

The [DRIVER] section holds driver wide configuration variables. Currently, only DEBUG is
supported. Set it to zero to turn off debugging. Setting it to 1 or 2 will turn on debugging to varying
degrees and cause COMGENIUS to print diagnostic information to the console as it operates.

3.2.2. [PORTS]

Each row of text in the [PORTS] section which is not a comment gives a port definition. A separate
definition is needed for each port that will be used with COMGENIUS. There are 8 fields per row,
described below:

Field Meaning

LOGICAL PORT Each port definition should use a unique
number in the range 0-31, normally starting at
zero. The LOGICAL PORT value is what will be
needed when a COMPRINT or COMSCAN
instruction is entered and you are asked for the
port parameter.

PHYSICAL COMPORT The is COM1 to COM31. Physical com ports on a
SoftPLC runtime have a prefix of COM and are
numbered starting at 1.

Encoding Set this to ISO-8859-1 if you are working with 8
bit characters like ASCII or Latin-1. Otherwise if
you are working with characters outside the
range of 0-255, see here.

Baudrate Normally 9600 or 19200 or 38400

Databits May be 5, 6, 7, or 8. 8 is standard.

Parity N = none O = odd E = even

Timeout The time to wait for a COMSCAN instruction to
complete, in milliseconds. COMSCAN gives up
after this time duration.

3.2.3. [STRINGS]

The string table is a read-only array of strings. As read-only, the strings may not be modified at run
time. Strings from the string table are used solely as format specifications. The string table is edited

6

with the same configuration text editor as is used for the other configuration file sections.

The strings you add to the string table are numbered from 1. COMGENIUS supplies
string number 0 itself, and it is the empty string: "" . Remember, your first string is
numbered 1.

A string table may contain up to 32,000 strings, or up to the limits of available RAM memory in the
runtime, whichever comes first. A single string may not exceed 255 characters in length.

When loading the RAM resident string table from the COMGENIUS.LST file, each line of text within
the file is scanned for a string delineated with a starting and ending double quote character. Text
which is not enclosed in double quotes is ignored. Text outside double quotes may be used to
document or comment the associated string. If no double quotes are found on a given line of text,
then that string will be equivalent to the null string at runtime. The null string is the same thing as
"".

Escape Sequences

If a string needs to make use of the " character itself, it should be preceded with the escape
delineation character \. The \ character is also used to specify non-ASCII (extended) bytes and
control codes. If the \ character itself is needed within a string, it must be preceded with another
instance of \. The full list of supported escape sequences is given in the following table. All escape
sequences are translated to 1 character at the time of string table load. In other words, these
sequences look like multiple characters, but represent only one.

In addition, an arbitrary character value can be specified by \ooo, where ooo is one to three octal
digits (0…7) or by \xHH, where HH is one or two hexadecimal digits (0…9, a…f, A…F), or by \uHHHH,
where HH is one to four hexadecimal digits.

Escape Sequence Meaning

\a alert (bell character), same as \x07

\b backspace, same as \x08

\f formfeed, same as \x0C

\n line feed, same as \x0A

\r carriage return, same as \x0D

\t horizontal tab, same as \x09

\v vertical tab, same as \x0B

\\ backslash

\" double quote

\ooo octal escape sequence which is an 8 bit
character value given in octal, where each 'o' is a
different octal digit, 0-7. For example \02

\xHH hex escape sequence which is an 8 bit
character value given in hexadecimal

7

Escape Sequence Meaning

\uHHHH unicode escape sequence which is a 16 bit
character value given in hexadecimal

Strings in the string table are stored as a sequence of 16 bit characters. The only
way to set the most significant byte of any character is to use the \uHHHH form for
each such character whose upper byte is not zero. For ASCII characters, the upper
byte will be zero. The first and last double quotes encountered on each line define
the string that will be retained in the RAM resident string table, enclosing double
quotes will be stripped off.

Here is a sample string table which is shown with its [STRINGS] section identifier.

[STRINGS]
1 "Enter your \"name:\"" prompt the user for his name
2 "Enter your access code:\a" prompt user for access code and beep (\a).
3 Tell user thank you. "Thank you for being there."
4 "\x1B[%d;%dH" ANSI terminal cursor position code,
5 which is ESC [#;#H
6 "\x10\x06" Data Highway DLE ACK control codes.
7 "NK %S\0" Tool Coordinator Not Acknowledge
8 "HM %3d %d %S\0" Tool Positioner Home command.
"\b\b\b" 9 3 backspaces to erase last input.
"First line\r\nsecond line" 10 Output two lines using \r\n.
"Here is a unicode character: \u124F"

The [STRINGS] section file will generate 11 strings, numbered 1 to 11 in the RAM resident string
table. String 5 will be the null string, since line 5 has no double quoted text (line 5 was used as a
continuation of a comment relating to string 4).

The above example shows how COMGENIUS looks only for the first and last set of double quotes to
define the bounds of each string. (See lines 3, 9 and 10).

8

Chapter 4. Usage
This section contains detailed setup and reference material. Each of the TLIs are described in a
good bit of detail. If this is your first reading of this section, you may want to merely scan it. Then
study the Examples section in detail, and while doing so, come back to this section treating it as
reference material.

4.1. Installation
The TLM is named comgenius.tlm.so and is found as part of the standard SoftPLC 4.x installation in
the /SoftPLC/tlm directory. To use it you merely have to enable it in NexGen’s PLC | MODULES
editor by enabling the Use checkbox in the same row as the COMGENIUS TLM.

Then you must edit the text file COMGENIUS.LST which is the TLM’s configuration file. There is a
text editor for this COMGENIUS.LST file within NexGen. It is easy to edit the configuration file from
the PLC | MODULES editor. Simply click on the Configure button after selecting and enabling Use
in the same row as the COMGENIUS TLM.

4.2. Editor Usage

9

Fetch, Send, Load, and Save all have the same meaning as they do in the NexGen Module editor.
You can see the helpfile for that editor by going to that editor and clicking on Help.

Use Send to transfer the configuration down to the SoftPLC. The next step is to cycle power on the
SoftPLC for the changes to take place.

4.3. Ladder Instructions
This TLM implements the following TLIs (ladder instructions).

4.3.1. COMRCVCLEAR

This TLI throws away any bytes which are in the receiver buffer for the specified Port that have yet
to be read in by COMSCAN. After this instruction is energized, no further input is possible with
COMSCAN until more bytes actually arrive through the Port on the wire.

10

Parameter Meaning

Port: The LOGICAL PORT configured in
COMGENIUS.LST

4.3.2. COMXMITCLEAR

This TLI throws away any bytes in the transmitter buffer for the specified Port. After this
instruction is energized, no further output will take place until a COMPRINT instruction is
energized for this Port.

Parameter Meaning

Port: The LOGICAL PORT configured in
COMGENIUS.LST

4.3.3. COMRCVSTS

This TLI determines the number of characters available within the receive buffer for a particular
Port.

The PRE field of the Counter is set to the size of the receive buffer. The ACC word is set to the count
of received characters in the buffer. The overflow bit (OV) of the counter is set if there has been a
receive buffer overflow. This internal flag is automatically reset during the next COMSCAN which
removes enough characters to correct the overflow condition.

11

Parameter Meaning

Port: The LOGICAL PORT configured in
COMGENIUS.LST

Counter: Where to put the received characters count as
described above.

4.3.4. COMPRINT

COMPRINT outputs a packet of characters which is dynamically assembled using powerful string
formatting. COMPRINT is a general purpose output formatting function, similar in behavior to the C
programming language’s printf() function, but extended with automatic checksum generation
capabilities. COMPRINT can print binary byte packets, not merely ASCII strings. For example, to
print out a byte whose value is zero, simply put it into the format string with an octal escape
sequence like this: \0.

Parameter Meaning

Control: A datatable CONTROL element of type R which is
used to track the progress of the print operation.

Port: The LOGICAL PORT configured in
COMGENIUS.LST

Format: This is an integer index into the format string
table. The first string is numbered 1, not zero.
The chosen format string is the master
specification for the conversion, as explained in
detail below.

Param 1 to 6: These are 6 optional parameters. Each one may
supply either a STRING element, FLOAT word(s),
or INTEGER word(s) for inclusion in the
conversion as explained in detail below.

COMPRINT converts and writes output to the Port under control of the string table string given by

12

Format. The format string consists of a (potentially repeating) sequence of two types of objects: (a)
ordinary characters, which are copied to the output Port verbatim, and (b) conversion
specifications.

A conversion specification causes conversion and output of the next successive Param given to
COMPRINT. Each conversion specification begins with the character % and ends with a conversion
character. To output a %, use a %%.

A conversion specification consists of:

%[flag][width][.precision][l or L]conversion_char

where a % always signifies the beginning of a conversion specification.

The [] brackets are illustrative only and are not part of the conversion
specification. Fields wrapped in angle brackets are optional.

As shown above, between the % and the conversion_char there may be, in order, the following
fields:

13

Field Name Description

flag one or more of the following flags, which modify
the specification:

- : which specifies left adjustment of the
converted argument in its field.

+ : which specifies that the number will always
be output with a sign.

space : if the first character is not a sign, a space
will be prefixed.

0 : for numeric conversions, specifies fill in the
field with leading zeros up to the width.

: specifies an "alternate form", and its
interpretation varies by conversion_char. For o,
the first digit will be zero. For x or X, 0x or 0X
will be prefixed to a non zero result. For e, E, f, g,
and G, the output will always have a decimal
point; for g and G, trailing zeros will not be
removed. For S, a two’s complement form
(negated form) of checksum is generated instead
of a simple positive summation. For R, the crc16
is computed by pre-loading the total with
0xFFFF as is required by Modbus RTU protocol.

14

Field Name Description

width is a sequence of decimal digits. Or it may be the
character *, in which case the actual value is
taken from the next integer Param and that
Param is consumed. The interpretation of width
varies based on conversion character:

S or R: See the S and R conversion characters
below for details.

All others: minimum width of the field. The
converted Param will be printed in a field at
least this wide, and wider if necessary. If the
converted Param has fewer characters than the
field width it will be padded on the left (or right,
if left adjustment has been requested) to make
up the field width. The padding character is
normally space, but is 0 if the zero padding flag
is present.

' . ' (period) is used to separate the width from the precision,
as seen in the conversion specification
template above.

15

Field Name Description

precision is a sequence of decimal digits. Or it may be the
character *, in which case the actual value is
taken from the next integer Param and that
Param is consumed. If no digits appear after the
'.' (period), then the precision is taken as 0. If the
'.' does not appear, no precision may be specified
and it defaults to 1. If the precision is the *
character, then the value is taken from the next
Param which must be supplied as type integer,
and this next Param is thusly consumed. The
interpretation of precision varies based on
conversion character:

e, E, or f: the number of digits to be printed after
the decimal point.

g or G: the number of significant digits.

c or C: the number of consecutive characters to
output starting with the supplied Param.

o, i, b, u, or d: minimum number of digits to be
printed (leading 0s will be added to make up the
necessary width).

s: the maximum number of characters to be
printed from a STRING. In the event the STRING
is longer than this number, only the first
precision number of characters will be output. S
or R: see the conversion characters S and R
below for details.

16

Field Name Description

I or L means long length: when used with the o, u, x, X,
i, d, or b conversion characters, l or L indicates
that the corresponding Param is to be output as
a 32 bit long integer in displayable form. For
example, if N7:0 is passed as the Param for this
conversion specification within the format
string: "%Ld" then two integer words are used
and interpreted as a 32 bit long integer N7:0 and
N7:1, with the least significant 16 bits of the long
word being N7:0. For all other conversion
characters l or L is ignored.

The last part of of the conversion specification is the conversion_char. It tells what to do with the
corresponding Param in the TLI and it also locks down the Required Type for the Param:

conversion_char Required Param Type Meaning

b integer output in displayable unsigned
binary.

d integer output in displayable signed
decimal.

i integer output in displayable signed
decimal.

o integer output in displayable unsigned
octal.

u integer output in displayable unsigned
decimal.

x integer output in displayable unsigned
hexadecimal, lowercase hex
letters will be used.

X integer output in displayable unsigned
hexadecimal, uppercase hex
letters will be used.

17

conversion_char Required Param Type Meaning

s STRING The Param must be a STRING
element. Each character in the
STRING element is injected into
the output by running it
through the configured
character encoding scheme. Use
width to provide a minimum
output field width if the input
Param’s STRING element
contains a shorter number of
characters, and padding will be
output. Use precision to provide
a maximum output field width.
For example, a conversion
specification of "%12.12s" will
print exactly 12 characters. If
the STRING is less than 12 it will
be padded because the width is
12. If the STRING is less than 12
it will be truncated because the
precision is 12.

18

conversion_char Required Param Type Meaning

c integer A single byte is taken from the
least significant 8 bits of the
integer Param and promoted to
character by setting the upper 8
bits of the promoted unicode
character to zero. Then the
character is output with no
conversion other than
travelling through the normal
configured output character
encoding scheme, which if is
ISO-8859-1 simply throws away
the upper 8 bits of the
character, outputting only the
least significant byte of the
character. The end result is that
the original input byte is output
unchanged.

If the precision is specified and
is greater than 1, then the
process above is repeated
precision times, but each time
with a different input byte.
After the first byte, the output
continues with the most
significant 8 bits of the Param,
then the least significant 8 bits
of the word following the
Param, then the most
significant 8 bits of the word
following Param, and so on,
until the precision requirements
are met. For example, if you
wanted to send 6 bytes of
binary information stored at
N7:10 through N7:12 (2 bytes
per word, least significant byte
first, 3 words total), you would
use the format specification
"%.6c" and a Param of N7:10.

This is the little endian output.
See 'C' (upper case) for big
endian output.

19

conversion_char Required Param Type Meaning

C integer A single byte is taken from the
most significant 8 bits of the
integer Param and promoted to
character by setting the upper 8
bits of the promoted unicode
character to zero. Then the
character is output with no
conversion other than
travelling through the normal
configured output character
encoding scheme, which if is
ISO-8859-1 simply throws away
the upper 8 bits of the
character, outputting only the
least significant byte of the
character. The end result is that
the original input byte is output
unchanged.

If the precision is specified and
is greater than 1, then the
process above is repeated
precision times, but each time
with a different input byte.
After the first byte, the output
continues with the least
significant 8 bits of the Param,
then the most significant 8 bits
of the word following the
Param, then the least significant
8 bits of the word following
Param, and so on, until the
precision requirements are met.
For example, if you wanted to
send 6 bytes of binary
information stored at N7:10
through N7:12 (2 bytes per
word, most significant byte
first, 3 words total), you would
use the format specification
"%.6C" and a Param of N7:10.

This is the big endian output.
See 'c' (lower case) for little
endian output.

20

conversion_char Required Param Type Meaning

f float decimal string of the form [-
]dd.dddd. The number of digits
after the decimal point is given
by the precision, which defaults
to 6. If the precision is 0, no
fractional digits or decimal
points appear.

e or E float string using scientific notation
in the form [-]d.dddddde+-dd.
There is one digit before the
decimal point and precision
digits after. The precision
defaults to 6. If the precision is
0, the decimal point is not
written. E is used for the
exponent instead of e if the E
conversion character was
specified. A minimum of two
digits will appear in the
exponent.

g or G float string using either f or e (or E if
G was specified) format,
depending on the value of the
Param. e will be used if the
exponent is less than -3 or
greater than the precision. The
precision gives the number of
significant digits; it defaults to
6. The decimal point appears if
followed by a digit; trailing 0s
are truncated.

% no Param consumed The % character is printed.

21

conversion_char Required Param Type Meaning

S no Param consumed The output is a binary
checksum on all the characters
output from this COMPRINT
starting from the character at
offset width and continuing up
to and including the character
precision characters before the
place in the output stream
where the first character of the
checksum will go. width
defaults to 0 and precision
defaults to 1, which means sum
all the characters preceding the
checksum. If precision were 2,
then the character before the
checksum would be excluded,
etc. A sixteen bit checksum is
used (two bytes) and output
little endian, unless the "h"
Length modifier is present
indicating a one byte checksum.
The output from this
conversion is not likely to be
displayable.

22

conversion_char Required Param Type Meaning

R no Param consumed The output is a binary Cyclic
Redundancy Check (CRC-16) on
all the characters output from
this COMPRINT starting from
the character at offset width
and continuing up to and
including the character
precision characters before the
place in the output stream
where the first character of the
checksum will go. width
defaults to 0 and precision
defaults to 1, and 1 means
include the character just
before the checksum. If
precision were 2, then the
character before the checksum
would be excluded, etc. A
sixteen bit checksum is used,
and is output little endian. The
output from this conversion is
not likely to be displayable.

This conversion char is useful
for implementing the Modbus
RTU protocol using
COMGIENIUS.

Any other conversion chars will cause an error.

STATUS BITS/TROUBLESHOOTING COMPRINT

The COMPRINT TLI uses a CONTROL parameter to execute asynchronously. The TLI starts its
operation on a low to high rung transition. Unless and until the output buffer can hold the entire
COMPRINT output, no partial output is performed. When the output is entered into the buffer, the
DN bit comes on within the Control and the LEN is set to the number of bytes actually output. (Note
that this may happen before the characters are actually transmitted out the physical Port.) The
characters are in a ring buffer initially and the first one is or soon will be on its way out the
physical Port. If the rung conditions go false before the TLI can get access to the sufficiently
depleted Port buffer such that the entire output will fit, no output is performed.

There is no timeout associated with COMPRINT. At most 6 conversion Params and therefore at most
6 conversion specifications (of the type requiring a Param) may be specified in this TLI. COMPRINT
can fail to print only if:

1. you never energize the rung

23

2. you have a bad format string INDEX

3. you have not allowed the rung to go false from the last time you fired it and the DN bit came on

4. you have a bad port number

5. you have an illegal format string (for example, "%k")

If any of the above error conditions are true, then the ER bit is set AND the DN bit
is set. COMPRINT can be delayed if there is insufficient room in the output buffer.
This is indicated by the DN bit not coming on.

If none of the conditions 1) through 5) happen, then you expect the DN bit to come on and the ER bit
will be reset by the instruction. You do not ever have to reset the ER bit on COMPRINT because
successful completion clears the ER bit. Additionally, a false rung condition clears both DN and ER
[condition 1) above].

4.3.5. COMSCAN

COMSCAN reads bytes from the receive buffer for a port. Bytes read are first converted according to
the encoding scheme to a batch of characters, and then the batch of characters are converted
according to a format string and the values created are stored in the TLI’s integer, float, and/or
STRING element datatable Params. COMSCAN is similar to the C language "scanf" function, is a
general purpose serial input function, and has very powerful and wide ranging pattern matching
and conversion capabilities.

Parameter Meaning

Control: A datatable CONTROL element of type R which is
used to track the progress of the scan operation.

Port: The LOGICAL PORT configured in
COMGENIUS.LST

24

Parameter Meaning

Format: This is an integer index into the format string
table. The first string is numbered 1, not zero.
The chosen format string is the master
specification for the conversion, as explained in
detail below.

Param 1 to 6 These are 6 optional parameters. Each one may
receive either a STRING element, FLOAT word(s),
or INTEGER word(s) as a result of parsing and
converting fields in the batch of input
characters, as explained in detail below.

A major feature of this TLI, besides reading characters, is pattern matching on those characters
according to the format string. The instruction either succeeds or fails based on the pattern
matching, and this is indicated by the ER bit being on or off at the time the DN bit comes on.

In order for the TLI to succeed, the entired format string must be matched. If the
instruction does not succeed, then all characters tested during the pattern
matching are put back into the receive buffer for use by the next invocation of the
COMSCAN TLI.

The format string consists of a (potentially repeating) sequence of the following elements:

1. Spaces, tabs, carriage returns, line feeds, vertical tabs, and formfeeds which all cause input to
be skipped up to the next character which is not whitespace. (Whitespace characters are blank,
tab, line feed, carriage return, vertical tab, and formfeed.)

2. Other characters, except for % which are matched against the input.

3. A conversion specification:

%[* or #][width][.precision][modifier]conversion_char

where a % always signifies the beginning of a conversion specification.

The [] brackets are illustrative only and are not part of the conversion
specification. Fields wrapped in angle brackets are optional.

A conversion specification determines the conversion of the next input field. The result of the
conversion is placed in the next Param. Params are thus consumed one after another in this
fashion. If there are less Params than conversion specifications an error is returned. Excess Params
are ignored. If the * is present, the conversion is performed, but no Param is consumed.

An input field is normally a string of non-white space characters; it extends either to the next white
space character or until the field width, if specified, is exhausted. This implies that COMSCAN may
read across line boundaries to find its input, since newlines are white space.

The conversion_char indicates the interpretation of the input field. A % always signifies the

25

beginning of a conversion specification. As shown above, between the % and the conversion_char
there may be, in order, the following fields:

Field Name Description

* is the assignment suppression indicator.
Conversion verification and matching will take
place, but no Param is consumed.

is the "alternate form" indicator, and its
interpretation varies by conversion_char. For S,
a two’s complement form (negated form) of
checksum is generated instead of a simple
positive summation. For R, the crc16 is
computed by pre-loading the total with 0xFFFF
as is required by Modbus RTU protocol.

width is a sequence of decimal digits. It may NOT be
the '*' character. The interpretation of width
varies based on conversion character:

S or R: See the S and R conversion characters
below for details.

All others: ignored.

. (period) is used to separate the width from the precision.

26

Field Name Description

precision is a sequence of decimal digits. It may NOT be
the '*' character. If the period '.' does not appear,
no precision may be specified and it defaults to a
sensible value based on the conversion_char. If
present, the default is overridden and the
interpretation of precision varies based on
conversion_char:

S or R: See the S and R conversion characters
below for details.

c or C: Specifies the number of bytes to be copied
from the raw input stream.

s: Specifies the minimum number of characters
to be copied into the STRING element. Matching
and copying stop after precision characters, or if
whitespace is encountered first.

o, u, x, X, i, d or b: Specifies the minimum
number of numerical digits to expect excluding
the prefix like +,- or 0x. Matching and
conversion stop after precision characters, or if a
non-digit is encountered first.

All others: ignored

modifier may be one of L, l, H, or h.

L or l: indicates that the corresponding
argument is to be converted to a 32 bit long
integer when used with the o, u, x, X, i, d or b
conversion_char. For all other conversion_chars
it is ignored.

H or h: used only for the S conversion_char, see
below.

The last part of the conversion specification is the conversion_char. It tells how to convert the next
non-whitespace field in the input character stream:

27

conversion_char Required Param Type Meaning

b integer unsigned binary, like "1011011"

d integer match and convert a signed
decimal field, like "-423" or
"423" or "+432".

Using precision is normal,
example: "%.3d"

i integer if the field starts with a zero (0),
it is interpreted as octal, if it
starts with 0x or 0X it is
interpreted as hexadecimal,
otherwise it is interpreted as
decimal. Like "077" or "0xFF" or
"12"

o integer unsigned octal, like "077"

u integer unsigned decimal, like "423"

x or X integer unsigned hexadecimal, like
"AF9B"

28

conversion_char Required Param Type Meaning

c integer is a character copying input.
precision number of input
characters are copied verbatim
starting at the destination
integer Param. Only the least
significant 8 bits of each
character are used. precision
defaults to 1. The lower 8 bits of
each input character are copied
and packed into the destination
integer block using little
endian copying, with up to 2
characters per integer word.

The first character is put into
the least significant 8 bits of the
integer Param, the next input
character (if the precision is
greater than 1) is put into the
most significant byte of the
integer Param, then the next
input character is copied into
the least significant byte of the
next integer word after the
Param, etc., until precision
characters have been copied to
the block of words given by the
Param.

For example: “%.30c” would
match and copy the next 30
characters from the input
stream, regardless of their
values, and would fill 15 integer
words starting at Param.

Only the lower 8 bits of each
character are used. This
conversion_char effectively
"matches" any character or
precision number of characters.
The lower 8 bits of each
character are packed into the
destination Param verbatim
using little endian copying.

29

conversion_char Required Param Type Meaning

C integer is a character copying input.
precision number of input
characters are copied verbatim
starting at the destination
integer Param. Only the least
significant 8 bits of each
character are used. precision
defaults to 1. The lower 8 bits of
each input character are copied
and packed into the destination
integer block using big endian
copying, with up to 2 characters
per integer word.

The first character is put into
the most significant 8 bits of the
integer Param, the next input
character (if the precision is
greater than 1) is put into the
least significant byte of the
integer Param, then the next
input character is copied into
the most significant byte of the
next integer word after the
Param, etc., until precision
characters have been copied to
the block of words given by the
Param.

For example: “%.30C” would
match and copy the next 30
characters from the input
stream, regardless of their
values, and would fill 15 integer
words starting at Param.

Only the lower 8 bits of each
character are used. This
conversion_char effectively
"matches" any character or
precision number of characters.
The lower 8 bits of each
character are packed into the
destination Param verbatim
using big endian copying.

30

conversion_char Required Param Type Meaning

e, E, f, g or G float floating point number is put
into the Param.

%
' ' (space)
\t (tab)
\v (vertical tab)
\r (carriage return)
\n (line feed)
\f (form feed)

no Param consumed Any one of the 7
conversion_chars may be given
in the format string. precision is
ignored. The given
conversion_char is merely
matched in the input stream of
characters and thrown away.
No Param is consumed.

Examples:
"% " matches a space
"%\t" matches a tab
"%\r" matches a carriage return

31

conversion_char Required Param Type Meaning

s STRING The Param is a STRING element
like ST99:48 that receives the
next non-whitespace block of
input characters. Leading
whitespace is ignored. The
input characters are stored in
the STRING element until:
• a whitespace character is
encountered, or
• the STRING element is filled
entirely (82 characters), or
• precision characters have been
put into the STRING element.
(precision defaults to 82.)

If the receive buffer runs out of
input characters before any of
the above 3 conditions are
matched, then the matching
fails.

All 16 bits of each character are
saved into their respective
character position within the
STRING element.

If specific quantities of
whitespace must be included in
the input scan, here are some
additional conversion_chars to
consider:

1. use %c or %C with precision,
for example: "%*.2c", will match
any 2 characters and suppress
assignment to a Param (i.e.
throw away the next two
characters).
2. use "% " (percent space),
which matches a single space
character and throws it away.
See % above.

32

conversion_char Required Param Type Meaning

S no Param consumed The width defaults to 0 and the
precision defaults to 1. The
output is a binary checksum on
all the characters received (NOT
the same as converted) during
this COMSCAN starting from the
character at offset width up to
and including the character
precision characters before this
field.

The calculated value is
compared to the two characters
in the input at this position (or 1
byte if the 'h' modifier is given).

R no Param consumed The width defaults to 0 and the
precision defaults to 1. The
output is a binary Cyclic
Redundancy Check (CRC-16) on
all the characters input during
this COMSCAN starting from the
character at offset width and
continuing up to and including
the character precision
characters before this field. A
sixteen bit CRC-16 is used.

The initial value of the CRC is
preloaded with zero (0), unless
the # flag is used in which case
the initial value is 0xFFFF. The
flag is necessary when
receiving Modbus RTU replies.

The CRC-16 computed in this
way must match the 2 input
characters at this position in
little endian fashion. See the
MODBUS example in the
examples section.

n integer grabs the number of characters
read up to this point.

33

conversion_char Required Param Type Meaning

All other characters are not conversion characters and will cause an error.

The COMSCAN TLI uses a Control parameter to execute asynchronously. The TLI starts its operation
on a low to high rung condition transition. When the TLI finishes the DN (done) bit in the CONTROL
element is set. If there is an error at completion, then also the ER (error) bit is set, else not. After the
start of operation on the low to high rung transition, the following behavior is expected for each
scan:

Condition CONTROL and Status

Sufficient input characters have been read to
match all the conversion specifications in the
format string.

Successful Completion.

DN: set
ERR: not set
LEN: set to total number of characters read
POS: set to number of conversion specs matched

Sufficient input characters have been read to
determine that the matching of conversion
specifications cannot succeed. The invocation
fails and all input characters are put back
into the receive buffer for another COMSCAN
or COMRCVCLEAR.

Read characters are put back into the receive
buffer for next scan.

Failed Completion.

DN: set
ER: set
LEN: set to total number or characters read and
indicates the offset into the input stream where
the mismatch occurred
POS: set to number of conversion specs matched

Insufficient characters are available in the
receive buffer to complete a match, and the
timeout has expired as set in the configuration
file for this port. The time is measured starting
from the low to high rung transition.

Read characters are put back into the receive
buffer for next scan.

Failed Completion.

DN: set
ER: set
EM: set
LEN: set to total number of characters read
POS: set to number of conversion specs matched

Insufficient characters are available in the
receive buffer to determine a match, and the
timeout has yet to expire.

Read characters are put back into the receive
buffer for next scan.

Not Completed. As long as the instruction stays
energized by the rung, the instruction waits for
further character input or the timeout

DN: not set
ER: not set
LEN: set to total number of characters read
POS: set to number of conversion specs matched

34

Condition CONTROL and Status

If the rung is de-energized before completion. No Completion will occur.

EN: not set
DN: not set

If the amount of input characters is insufficient to process the entire format string, and as long as
the TLI remains energized by the rung, the instruction waits for several scans until enough data is
available or until the Port specific TIMEOUT has expired.

For each scan for which the TLI is energized, any or all the datatable Params are
subject to modification. This is true until the DN bit comes on, and whether or not
the TLI ultimately succeeds or not. It is usually necessary to treat the Params as
"staging areas" only that must be snap-shotted (copied) to a safe place at the
moment the DN bit comes on and the ER bit is not on. Otherwise their values are
not final nor reliable.

COMSCAN can fail to scan if any of the following are true:

1. you never energize the rung, or de-energize it before the timeout expires

2. you have a bad format string INDEX

3. you have not allowed the rung to go false from the last time you fired it and the DN bit came on

4. you have a bad port number

5. you have an illegal format string (for example, “%k”)

6. you have a mismatch in the number of parameters indicated in the format string relative to the
number supplied to the instruction, or a type mismatch on any parameter. (Eg: “%u” and then
supply a float parameter to the TLI instruction, where %u requires an integer.)

7. a mismatch on the inbound data occurred, meaning the serial line data did not agree with the
format string

8. a timeout occurred. This sets the EM, ER, and DN bits.

4.3.6. STRPRINT

STRPRINT outputs a packet of characters which is dynamically assembled using powerful string
formatting. STRPRINT is almost exactly like COMPRINT, except that the output is to a STRING
element and not to a serial port, and this instruction executes to completion immediately (is not
asynchronous). Read about COMPRINT and then return here.

35

Parameter Meaning

String: Where to print to. Up to 82 characters may be
copied into this STRING element.

Format: This is an integer index into the format string
table. The first string is numbered 1, not zero.
The chosen format string is the master
specification for the conversion, as explained in
detail below.

Param 1 to 6 These are 6 optional parameters. Each one may
supply either a STRING element, FLOAT word(s),
or INTEGER word(s) for inclusion in the
conversion as explained in the COMPRINT
detail.

4.3.7. STRSCAN

STRSCAN reads characters from a STRING element. The characters are converted according to a
format string and the values created are stored in the TLI’s integer, float, and/or STRING element
datatable Params. COMSCAN is similar to the C language "scanf" function, is a general purpose
serial input function, and has very powerful and wide ranging pattern matching and conversion
capabilities.

36

Parameter Meaning

Control: A datatable CONTROL element of type R which is
used to track the progress of the scan operation.

String: The source of the input characters. Up to 82
characters may be read from this STRING
element.

Format: This is an integer index into the format string
table. The first string is numbered 1, not zero.
The chosen format string is the master
specification for the conversion, as explained in
detail below.

Param 1 to 6 These are 6 optional parameters. Each one may
receive either a STRING element, FLOAT word(s),
or INTEGER word(s) as a result of parsing and
converting fields in the input characters, as
explained in detail at COMSCAN.

Study the operation of the COMSCAN TLI to better understand how STRSCAN works. They are the
same except for the source of the characters.

37

Chapter 5. Debugging Tips
This section gives tips on debugging problems with this TLM.

5.1. Enabling Debug Prints
In the configuration file there is the DEBUG setting. It may be set to 0, 1, or 2 to indicate that you
want no, some, or most debugging respectively. Remember a DEBUG value of "0" means no
debugging. On version 4.x SoftPLC, all process output from the SoftPLC runtime engine is normally
directed to the syslog, because SoftPLC runs as a daemon normally. The syslog can be configured in
a number of different ways, but the default uses a small RAM resident FIFO and eventually will run
out of space and wrap back around on itself. Rather than reconfiguring the syslog, there is an easier
way.

Following is a procedure to get the debugging output into a text file.

1. Log into SoftPLC using either a) PUTTY from Windows or b) using ssh from Linux or c) at the
command prompt of the SoftPLC system.

2. Run this command:
/etc/init.d/softplc.sh stop

3. Change into the /SoftPLC/run directory:
cd /SoftPLC/run

4. You can run SoftPLC from the command prompt now and redirect its output to an arbitrary file
(named out.txt here). We put that file into the RAM disk which is anchored in the /tmp directory.
./runsplc > /tmp/out.txt

5. Let this run for 5-60 seconds, then press control-C. Now you have the output captured in file
/tmp/out.txt, each request-response transaction will be captured in that file.

6. You can look at the file using the program named "less".
less /tmp/out.txt
You can look at this output with the Modbus Specification, and the manual for your Modbus
master software in hand. Press ESC when done.

7. When done, remember to set debug back to "0", then you can start SoftPLC as a daemon either
by a) power cycling the box or b) doing the following:
/etc/init.d/softplc.sh start

38

Chapter 6. Examples

6.1. Example 1. COMPRINT of Text with Integers
All examples below assume the following string table:

1 "Rack no: %3o has %2d modules.\r\n" example 1
2 "\x02\x03%.2C%.2C%#R" example 2, Modbus slave 2, function 3
3 "AK HM %.14s %.3d" example 3
4 "\x02\x03\xfa%.250C%#R" example 4, Modbus response
5 "\x02\x83%c%#R" example 5, Modbus exception

6.1.1. Example 1. COMPRINT of Text with Integers

Format: 1
Two parameters: integer, integer

Sample output: "Rack no: 5 has 2 modules."

Look at our example string table’s format string number 1. The trailing carriage
return and line feed are not shown in the Sample output because they are not
visible characters. There are two conversion specifications and therefore two
Params are required, in this case both integers. The first conversion specification
is %3o and means print out a field 3 characters wide, pad on the front end with
spaces if needed and do it in octal. The second conversion specification is %2d and
means print out a field 2 characters wide at least, pad on the front end with spaces
if needed and do it in decimal.

6.2. Example 2. COMPRINT of Modbus RTU Query
In this example binary is printed rather than ASCII, so our format string has hex escapes. The
desired Modbus RTU query is Read Holding Registers, Modbus function number 3 and intended for
slave 2:

+-------+-------+-------+-------+-------+-------+-------+-------+
| 02 | 03 | Ref Hi| Ref Lo| Num Hi| Num Lo| CRC Lo| CRC Hi|
+-------+-------+-------+-------+-------+-------+-------+-------+
 slave func |<----2 bytes-->|<----2 bytes-->|<----2 bytes-->|

39

http://modbus.org/docs/PI_MBUS_300.pdf

The 2 Ref bytes are the datatable address starting at 0 (which corresponds to register 40001), in
most significant byte first format (big endian). The 2 Num bytes are the count of registers to read,
in big endian format, with a maximum of 125. The 2 CRC bytes are the CRC-16 calculated by
preloading with 0xFFFF, not 0, and are output in little endian format.

Format: 2
Two parameters: integer, integer

Sample output: see above where the 8 byte query is shown

Look at our example string table’s format string number 2. The first byte is 0x02
and is the slave id we arbitrarily chose for this example. It could be any slave id
and it could also have been created as a result of a %c (single byte) conversion
specification. The next byte is hard coded as 0x03, the Modbus function. The next
two bytes are a big endian 16 bit binary integer containing the memory address, so
%.2C is the conversion specification. The next two bytes are a big endian 16 bit
binary number containing the desired register count, so %.2C is the conversion
specification. The datatable value for this, Param 2, cannot exceed 125 according to
the Modbus specification. The last two bytes are the little endian CRC-16 using
0xFFFF as the CRC preload. To get the 0xFFFF preload, the alternate form specifier
is used in the conversion specification %#R. There is yet a simpler format string
possible for this example, and that would be to hard code the Ref and Num words
using 4 hex escapes, something that makes more sense if they do not need to be
modifiable at runtime. In such a case no Params would be required, since the %#R
conversion specification uses no Params itself.

6.3. Example 3. COMSCAN of Text with Integers
In this example a string is expected on the Port in ASCII. The expected string looks like:

AK HM <variableWidthNonWhitespace> NNNCRLF

The AK HM are fixed. The <variableWidthNonWhitespace> is a field that will not have whitespace
in it. This field’s width will vary from 1 to 14 characters. The NNN is a decimal number like "123"
and it is at most 3 characters wide. The CRLF are two characters: \r and \n respectively. They are
whitespace according to our earlier definition.

40

Format: 3
Two parameters: STRING element, integer

Look at our example string table’s format string number 3. The AK HM are fixed
and must be matched explicitly. The first conversion specification is %.14s,
meaning match and copy a non-whitespace string segment of up to 14 characters
into the corresponding Param 1, which must be a STRING element. The copying
will end at the space character preceding the NNN. The next conversion
specification is %.3d, which means expect a decimal integer field (possibly with a
leading '-' character) up to 3 digits wide. The end of the NNN field will be marked
by whitespace (in this case the CRLF), or by any character after the 3rd decimal
digit character because of the precision of 3.
You almost always want to use precision in your COMSCAN conversion
specifications, otherwise matching can erroneously succeed before all the
bytes are received on the serial port.

6.4. Example 4. COMSCAN of Modbus RTU Response
In example 2, COMPRINT was used to send a Modbus query. In this current example, the desired
Modbus RTU response is for the Read Holding Registers query, Modbus function number 3 and
coming back from slave 2:

+-------+-------+-------+-------+-------+-------+-------+ +-------+-------+
| 02 | 03 |# bytes|data0Hi|data0Lo|data1Hi|data1Lo|...| CRC Lo| CRC Hi|
+-------+-------+-------+-------+-------+-------+-------+ +-------+-------+
 |<---- 125 words or 250 bytes ----->|

For discussion, we’ll assume the query asked for 125 registers. Then the # bytes field will be 250
which is 0xFA in hex. COMSCAN is both a matcher and converter. If slave id, function, # bytes, or
CRC do not match, then the ER bit is set along with the DN bit. However, the Params can still be
modified even on COMSCAN mismatch and failure. Therefore it is critical to buffer the Params
and copy them to a safe useable place when the DN bit is on without the ER bit.

Format: 4
One parameter: integer

41

http://modbus.org/docs/PI_MBUS_300.pdf

Look at our example string table’s format string number 4. The first byte is 0x02
and is the slave id we arbitrarily chose for this example. It could be any slave id.
The next byte is hard coded as 0x03, the Modbus function. The next byte is 0xFD
which is 2 x 125, the byte count. Then comes the conversion specification %. 250C,
which means convert 250 bytes in big endian fashion and store the results starting
at Param1, with 2 bytes per integer. The last conversion specification is the %#R
which is for the CRC-16, preloaded with 0xFFFF and compared little endian to the
received bytes at this position. This conversion specification is for matching only,
no conversion is stored in any Param, so no Param is required for it.

6.5. Example 5. Simple Modbus RTU Master
This example is a complete working Modbus RTU master implemented with a COMPRINT and two
COMSCANs. The COMPRINT is basically described by example 2. On the serial cable, in response to
the COMPRINT one of three results are expected:

1. A valid Modbus response packet

2. A valid Modbus exception packet

3. Garbage or no response at all

Matching a Modbus response was discussed in example 4, and it requires its own COMSCAN
instruction with a taylor made format string. Matching a Modbus exception packet requires
another COMSCAN instruction with a different taylor made format string. Because COMSCAN puts
back all characters when any part of the matching process fails, this leaves them all available for
the next COMSCAN to try and match against. If the second one also fails, any garbage characters
can be cleared out of the receive buffer with the COMRCVCLEAR TLI.

The example is available both as a PDF printout and as a binary SOFTPLC.APP file. You can
download either from our website. To use the SOFTPLC.APP file, put it into a new directory like
\SoftPLC\app\MODBMAST\ or similar so that TOPDOC NexGen can find it. Acrobat Reader is needed
to view the PDF file, and can also be used to print it out to a printer.

This example uses format strings 2, 4, and 5. Format strings 2 and 4 were discussed in examples 2
and 4 respectively. Format string 5 is designed to match an exception response, per the Modbus
specification and capture the single byte exception code into the least significant byte of an integer
Param.

Please read the PDF file and the rung comments for the full understanding of the program logic.

42

http://www.softplc.com/usermanuals/comgenius/modbus_example.pdf
http://www.softplc.com/usermanuals/comgenius/SOFTPLC.APP

	ComGenius for SoftPLC® Runtime
	Table of Contents
	Chapter 1. Overview
	1.1. Introduction
	1.2. Definitions
	1.3. TLI Summary
	1.4. Requirements
	1.5. Changes in 4.x

	Chapter 2. Warranty
	Chapter 3. Configuration
	3.1. Module Editor
	3.2. Configuration File
	3.2.1. [DRIVER]
	3.2.2. [PORTS]
	3.2.3. [STRINGS]
	Escape Sequences

	Chapter 4. Usage
	4.1. Installation
	4.2. Editor Usage
	4.3. Ladder Instructions
	4.3.1. COMRCVCLEAR
	4.3.2. COMXMITCLEAR
	4.3.3. COMRCVSTS
	4.3.4. COMPRINT
	STATUS BITS/TROUBLESHOOTING COMPRINT

	4.3.5. COMSCAN
	4.3.6. STRPRINT
	4.3.7. STRSCAN

	Chapter 5. Debugging Tips
	5.1. Enabling Debug Prints

	Chapter 6. Examples
	6.1. Example 1. COMPRINT of Text with Integers
	6.1.1. Example 1. COMPRINT of Text with Integers

	6.2. Example 2. COMPRINT of Modbus RTU Query
	6.3. Example 3. COMSCAN of Text with Integers
	6.4. Example 4. COMSCAN of Modbus RTU Response
	6.5. Example 5. Simple Modbus RTU Master

